If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.4t-0.36t^2=0
a = -0.36; b = 5.4; c = 0;
Δ = b2-4ac
Δ = 5.42-4·(-0.36)·0
Δ = 29.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.4)-\sqrt{29.16}}{2*-0.36}=\frac{-5.4-\sqrt{29.16}}{-0.72} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.4)+\sqrt{29.16}}{2*-0.36}=\frac{-5.4+\sqrt{29.16}}{-0.72} $
| 10-b=26+2 | | 4x+3/2=10x-5 | | 4x*112=1344 | | 4x(112)=1344 | | -7(x+8)-45=5-71 | | 0.5x-0.2(4)=1.7 | | -5m+11=-(m+1) | | -4/3x-1/4=-27/12x+5/3-7/5x+3/10 | | 9/10(x+23)=4/12 | | −5m+11=−(m+1) | | 5/2x-1/6x=-4/3+2/3x | | 5x+5x+2x=x+3x | | 0=12x^2-180+500 | | A5+d=90 | | -5(3t-3)+9t=7t-3 | | X+0.2x=17250 | | 16–4(y+3)=2y | | 10x+x^2+21=0 | | 12+3m=42 | | 3.4t+19.36=10.32 | | 6(5z-1)-5(z+4)=6(z+1) | | 0x0.1=5 | | 8x=185 | | X=14x/2x^2 | | r-5/12=-1 | | r+0=r | | r-5/12=1 | | -4+r/7=-3 | | 1.8+x=5.1 | | b/4-2=-5 | | 9r+10=172 | | 13x-104=104=116+2x |